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Abstract
The stochastic resonance of a subdiffusive bistable system driven by Lévy noise
with an input of sinusoidal signal is studied. We employ the subordination
technique to model the subdiffusive system with a time-space-dependent
external driving force. It is shown that stochastic resonance is robustly present
in the competitive case, but is reduced by the lower subdiffusive index α or
the lower superdiffusive index μ. However, when the system parameters are
optimally configured, long jumps induced by Lévy flights may enhance the
stochastic resonance phenomenon, and in a certain range, the subdiffusive
effect can be cancelled out by superdiffusive dynamics. The subordination
technique provides a possible physical insight into the stochastic resonance
phenomenon.

PACS numbers: 05.04.−a, 02.50.−r

1. Introduction

Addition of noise can play an active role in enhancing the nonlinear system output, and the
counterintuitive phenomenon is termed stochastic resonance (SR). In the past two decades,
SR has been widely studied in a variety of fields, both in theory and in application [1, 2].
However, almost all research studies treated input noise as solely Gaussian and hence, had
finite variance. Since non-Markovian SR theory emerged [3, 4], SR of anomalous diffusion
has attracted much attention, and particularly the pioneering works by Hänggi et al [4] showed
that long waiting time induced by heavy-tailed distribution or long-length jump of Lévy noise
should be considered more carefully, based on the SR viewpoint. Recently, some works have
been carried out to investigate the quantities which are related to SR in anomalous diffusion.
For example, linear response theory of the subdiffusive bistable system was studied by Liu et al
[5]. It is shown that strong subdiffusive dynamics can weaken input–output synchronization
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and make the SR effect become less pronounced. Parameter-induced aperiodic stochastic
resonance (ASR) of the subdiffusive bistable system was also discussed by Xu et al [6]. It
is shown that with optimized system parameters, the SR effect decreases with the increase
of subdiffusive character, while for the superdiffusive case, Dybiec et al [7] proved that
periodic SR still might occur in the presence of symmetric or skewed Lévy noise. Compared
with Gaussian noise at the same intensity, the SR effect is weakened with the increase of
superdiffusive index. Parameter-induced ASR of a bistable system driven by Lévy noise was
also studied by Zeng et al [8]. It is shown that under optimal system parameters the parameter-
induced ASR effect was enhanced as spatial non-locality is increased. Due to universality of
subdiffusion or superdiffusion, the anomalous diffusion effect of SR has become an interesting
topic [9, 10]. However, the study of SR in the coexisting phenomenon between subdiffusion
and superdiffusion has received limited attention. To our knowledge, the SR effects of the
subdiffusive bistable dynamics system driven by Lévy noise have not been investigated. It is
worth studying the cooperative effects between subdiffusive dynamics and Lévy noise from
the SR viewpoint.

In contrast with recent works, our current attention is on analysing the SR effect of the
subdiffusive bistable system driven by Lévy noise with an input of sinusoidal signal. The
paper is organized as follows. In section 2, some recent related fractional Fokker–Planck
equation (FFPE) technologies are reviewed briefly. It is shown that a valid FFPE form with
time-space-dependent force field is not easily available. The subdiffusive bistable dynamics
driven by Lévy noise is modelled by the subordination technique based on the generalized
Langevin equation. The numerical method is presented. In section 3, the anomalous properties
of the subdiffusive bistable system are studied by tuning noise intensity and changing system
parameters. System output signal–noise-ratios (SNRs) are computed, and the results are
discussed. We show that the SR is robust in the competitive case. Finally, the conclusions are
made in section 4.

2. Subdiffusive bistable model driven by Lévy noise

The FFPE has played an important role in studying the dynamic properties of anomalous
diffusion [11]. Some recent related technologies are reviewed based on the SR viewpoint.
In the pure subdiffusive case, the subdiffusive FFPE with double-well potential is solved
numerically by the eigenfunction expansion method [5]. The solution of the FFPE with a
harmonic potential is presented in Hermite polynomial form [11]. The FFPE with arbitrary
external potential is solved by the state-dependent diagonalization method [12]. It is also
shown that the eigenfunction expansion problem of the FFPE can be transformed to the
variational problem and then it can be solved by the finite element method, and an efficient
numerical method is also given, which is applicable for an FFPE with any potential [6].

For the pure superdiffusive case, the FFPE in the cases of constant force and linear
force has been discussed [11]. However, to our knowledge, analytical solutions of spatial the
FFPE with any nonlinear external force field remain a challenging problem. Recently, the
FFPE with a bistable potential was solved by employing the Grünwald–Letnikov scheme [8].
The numerical method has become an important tool in studying the SR phenomenon driven
by Lévy noise.

The competition model between subdiffusion and superdiffusion can be described by an
FFPE with temporary and spatial derivatives

∂ p(x, t)

∂t
=0 D1−α

t

[
∂

∂x

V ′(x)

η
+ D∇μ

]
p(x, t), (1)
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which is derived from the continuous time random walk (CTRW) model [11]. Here the
parameter D means the diffusion coefficient. The random walker moves with step lengths
chosen from a given probability density function (PDF). In the walking process, the walker
visits the sites at times chosen from the infinite mean PDF. The long-tailed waiting times
(temporal −t−(1+α), 0 < α < 2) cause slowly decaying memory effects which give rise
to temporal derivative or subdiffusion. When step lengths obey a long-tailed distribution
(∼|x|−(1+μ), 0 < μ < 2), corresponding to Lévy flights, this can lead to spatial derivatives or
superdiffusion. The operator

D1−α
t f (t) = 1

�(α)

d

dt

∫ t

0
(t − s)α−1f (s) ds (2)

is the fractional derivative of the Riemann–Liouville type and the operator ∇μ denotes the
Riesz fractional derivative. However, Heinsalu and Hänggi et al [13] argued that equation (1)
is invalid for pure time-dependent force fields, which fails to correspond to the underlying
CTRW. A subdiffusive fractional Fokker–Planck dynamics in the class of dichotomously
alternating forces is derived,

∂ p(x, t)

∂t
=

[
∂

∂x

V ′(x, t)

η
+ D∇μ

]
0

D1−α
t p(x, t). (3)

At present, the correctness of the FFPE (3) is still difficult to validate when extended ad hoc to
an arbitrary time-space-dependent force field different from the dichotomous case. For related
physical arguments, refer to [14]. The existence of any physically valid FFPE with arbitrary
potential fields still remains intrigued.

In recent paper, a model based on the Langevin equation and subordination technique has
been proposed, and Magdziarz et al [15] proved that the PDF of the subordination Langevin
process was equivalent to the solution of the FFPE. The authors also tackled the problem
of modeling subdiffusion with an arbitrary time-space-dependent driving force [16]. The
subordination technique allows us to study the subdiffusive bistable system without referring
to the FFPE.

2.1. Model

Since an FFPE describing subdiffusive dynamics with arbitrary time-space-dependent force is
still lacking, we overcome the gap by using the subordination process and Langevin equation
to model the SR of the subdiffusive bistable system driven by Lévy noise, with an input of
sinusoidal signal. This is a main technical difference from recent papers, which are based on
the FFPE. The subordinated Langevin equation can be expressed as

Y (t) = X(St ). (4)

The subordinator St, called the inverse time α-stable process subordinator, 0 < α < 1, is
defined as

St = inf {τ, U(τ) > t} (5)

where U(τ ) denotes a strictly increasing α-stable Lévy motion. The parent process X(τ ) is the
solution of the Itô stochastic differential equation (SDE)

dX(τ)/dτ = −V ′(X(τ), U(τ))η−1 dτ + D1/μ dLμ ,β(τ ) (6)

which is driven by symmetric Lévy noise Lμ,β(τ ). We consider the subdiffusive SR system
with the time-space-dependent bistable force field

F(x, t) = −V ′(x, t) = ax − bx3 + A0 cos(Qt + ϕ) (7)

3
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Assuming that ϕ = 0, for the time-space-dependent force F(x, t), it should be noted that
after subordination X(St), the actual force is given as F(x, U(St)). By employing the relation

U(St ) =
{
t t = tj

t + 	Lt t �= tj ,
(8)

where tj, j ∈ N , is the instant time when a test particle is released from a j th trap, and 	Lt

is random leapover time, it is shown that the particle may be biased by the force F(x, t) [16].
That is to say, we only subordinate the process X(τ ) without subordinating the time-dependent
force. The relation plays an important role in studying the subdiffusive bistable dynamics.

The process X(τ ) is indexed by the internal time τ which is not physical time. The
subordinator St plays a role in helping the subordination parent process X(τ ) change time
scale from random internal time τ to physical time t. The process St and X(τ ) are assumed
to be statistically independent. The role of the subordinator St is analogous to the role of
the fractional Riemann–Liouville derivative in the FFPE (3) and may be used to describe the
heavy-tailed waiting time between successive jumps of a particle. The process St is responsible
for the subdiffusive behaviour of the system, whereas the parent process X(τ ) introduces Lévy
flights behaviour. Therefore, the long rest of the particle induced by subdiffusive dynamics
can be characterized by the subordinator St, and the long jumps of superdiffusion can be
characterized by the Lévy noise Lμ,β(τ ). The subordinated process combines both these
characteristics, which results in the competition between subdiffusion and Lévy noise [16].
Hence, we may use the subordination technique to explore the competitive model without
referring to the FFPE.

Along the paper, the PDFs of Lévy stable noise Lμ,β are expressed in terms of characteristic
function λμ,β (κ; σ , τ ) [7]

λμ,β(x; σ, τ) =
∫ +∞

−∞

dk

2π
e−ikxλμ,β(κ; σ, θ), (9)

where

λμ,β(κ; σ, θ) = exp

[
−θ |k|μ

(
1 − iβ

κ

|κ|ω(k, μ)

)
+ iσκ

]
(10)

and

ω(k, μ) =
{

tan πμ

2 if μ �= 1,

− 2
π

ln |κ| if μ = 1.
(11)

The exponent μ is the Lévy stable index, β is the skewness parameter, θ is the scale
parameter and σ is the location parameter.

2.2. Response measures

Since the discovery of the SR phenomenon, several different measures which characterize it
have been introduced in the literature [17, 18]. Some examples are as follows. In the periodic
SR case: (i) output SNR, (ii) the spectral factor, (iii) residence time distribution. In the ASR
case: (i) signal detection probability, (ii) information theory-based tools, etc. Throughout this
paper, we use the output SNR at the driving frequency:

SNR = 2

[
lim

	ω→0

∫ Q+	ω

Q+	ω

S(ω) dω

]/
SN(Q). (12)

Here ∫ Q+	ω

Q−	ω

S(ω) dω (13)
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represents the power carried by the signal and SN(Q) represents the power of the background
noise.

2.3. Numerical method

Next we start to approximate the process St and X(τ ) on the lattice {ti = i	t: i = 0, 1, 2, . . . ,
N}, where 	t = T/N and T is the time horizon. Recall that X(τ ) is given by SDE (6) with
Lévy noise, and St is the inverse time α-stable process subordinator. In step 1, we simulate
the trajectory of the process U(τ ) and its inverse St. In step 2, we simulate the trajectory of
the process X(τ ) using the standard Euler scheme. Note that the force in equation (7) is equal
to F(X(τ ), U(τ )) not F(X(τ ), τ ). Therefore, in step 1, one had to simulate U(τ ) first. Finally,
we evaluate the final process Y(t) = X(St) by subordinating X(τ ) from step 2 by St from step 1.
The case is delicate, and one should be careful of choosing an appropriate step length for the
lattice. The algorithm of simulating trajectories for the case of time-space-dependent force is
as follows.

(I) Our first objective is to approximate the value St0, St1, St2, . . . , StN of the subordinator. To
begin with approximation of a realization of the strictly increasing α-stable Lévy motion U(τ )
on the mesh {τ j = j	τ , j = 0, 1, 2, . . . , M}, by using the standard Euler method of summing
increments of the process U(τ ), we get

U(τ0) = 0,

U(τj ) = U(τj−1) + 	τ 1/αεj

(14)

where εj are the i.i.d totally skewed positive α-stable random variables. The procedure of
generating εj is as follows:

εj = c1
sin[α(V + c2)]

[cos(V )]1/α

(
cos[V − α(V + c2)]

W

)(1−α)/α

(15)

where c1 = [cos(πα/2)]−1/α , c2 = π/2, the random variable V is uniformly distributed on
(−π/2, π/2) and W has exponential with mean one. The iteration (6) ends when U(τ ) crosses
the level T, i.e. when for some j 0 = M we can get U(TM−1) � T < U(TM). Now for every
element ti of the lattice, we can find the element τ j such that U(Tj−1) � ti < U(Tj), and finally
from definition (5), we get that in such a case

X
(
Sti

) = τj . (16)

Since U(τ ) is strictly increasing, M always exists, and the above procedure can be
implemented efficiently.

(II) In the second step, we find the approximation X(St0), X(St1), . . . , X(StN) of the subordinated
process X(St). We approximate the solution of X(τ ) of the SDE (6) on the lattice {λk = k	λ:
k = 0, 1, . . . , L}. The number L is equal to the first integer that exceeds the value StN/	λ.
Employing the classical Euler Maruyama method, we get

X(λ0) = 0

X(λ k) = X(λ k−1) + V ′(X(λ k−1), U(λ k−1))η
−1 + ( 2D )1/2	λ1/2ξk.

(17)

U(τ ) on the lattice {λk = k	λ:k = 0, 1, . . . , L} can be approximated by the values of U(τ ),
which are obtained in step 1. In the case for some index m, the condition τm < λk < τm+1

holds true, we get

U(λk) = U(τm). (18)

5
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(III) To obtain the value of subordinator St0, St1, St2 . . . , StN on the lattice τ j, we can use the
value of λk on the lattice {λk = k	λ: k = 0, 1, . . . , L} to approximate St by finding for every
ti from the lattice {tj = j	t: j = 0, 1, 2, . . . , N} an index k such that the condition λk � Sti �
λk+1 holds true. Then we get

X(Sti) = X(λk). (19)

Since the subordination process X(τ ) is not continuous for 0 < μ < 2, linear interpolation is
not used at this point. The procedure of generating realizations of random variable ξ k with
symmetric or skewed Lévy noise can be described as follows:

ξk = c1
sin[μ(V + c2)]

[cos(V )]1/μ
×

[
cos(V − μ(V + c2)

W

](1−μ)/μ

(20)

with

c1 =
(

1 + β2 tan2
(πμ

2

))1/2μ

(21)

c2 = arctan
(
β tan

πμ

2

)/
μ (22)

where the random variable V is uniformly distributed on (−π/2, π/2) and W has exponential
distribution with mean one.

In the Euler scheme, we should note that in the case of impulsive noise the numerical
integration path may escape to infinity rapidly with the decrease of the stability index μ.
To eliminate the problem, we impose an constraint on the value of the process X(τ ), which
allows us to integrate equation (17) with any time step length [19, 20]. For example, we put
X(λk) = 10 when X(λk) > 10 and put X(λk) = −10 when X(λk) < −10 in the dynamics with
saturation effects. Recently, Heinsalu and Hänggi et al [21] presented a numerical method
to generating subdiffusive dynamics via underlying CTRW. In their approach, it is necessary
to generate successive residence times of the particle, which are Mittag–Leffler distributed.
The authors stated that one can conveniently use the Pareto law to replace the Mittag–Leffler
distribution when the subdiffusive index α is far from one. However, as the subdiffusive
index α approaches one, the use of the Mittag–Leffler distribution, which precisely matches
the Fokker–Planck description, should be used preferably. In the present paper, for both the
subdiffusive and superdiffusive cases, the subordination technique provides a natural way to
study the SR phenomenon.

3. Results

As discussed above, the subordination process is integrated by means of Euler’s method. We
choose the bistable system as a = 2 and b = 1, and adopt an integration step of 	λ = 10−3.
The simulations are repeated 250 times for each parameter set and the SNR is computed by
recourse to the average power spectral density. Sample paths of anomalous diffusion with the
parameters of α = 0.7, μ = 1.7 are plotted in figure 1. The interplay between subdiffusion
and Lévy noise is observed. The subdiffusive behaviour of the system is caused by the
inverse-time-α-stable subordinator, and Lévy-type jump is inherited from the parent process
in equation (6).

When the superdiffusive index μ is fixed, we examine the SNR performance as a function
of the noise intensity D, for different values of subdiffusive index α. Figure 2 illustrates that
the SNR first increases at first, then decreases, and exhibits a nonmonotonic dependence on
the noise intensity D. When α = 0.9, a pronounced peak can be found at the optimal noise
value DSR = 0.18. The optimal noise value DSR only shifts slightly as the subdiffusive index

6
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(S

t)
S t

τ

X
(τ 

) 
(A)

(B)

(C )

Figure 1. Exemplary trajectories of (A) the parent X(τ ) (B) anomalous diffusion X(St) (C) the
subordinator St in the presence of the bistable system with an input of sinusoidal signal. The
parameters are α = 0.7, μ = 1.7, the time step of the integration 	λ = 0.001, a = 2, b = 1 and the
driving frequency Q = 0.1. The constant intervals indicate the long waiting time induced by the
subdiffusive character.

α varies. When the index α is smaller than 0.7, the SNR decreases very slowly after the noise
intensity D reaches the optimal value DSR, which indicates that the SNR measure becomes
insensitive to the variance of noise for smaller subdiffusive index α. It can be explained that

7
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g 1
0S
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R

Figure 2. SNR versus noise intensity D for different values of subdiffusive index α. The parameters
are μ = 1.7, a = 1, b = 1 and Q = 0.1, skewness index β = 0. The different curves represent the
SNR values with different index α, showing a decrease of the subdiffusive response to the external
signal. In particular, it is shown: α = 0.9 (O), α = 0.8 (•), α = 0.7 (�), α = 0.6 (�), α = 0.5 (�),
α = 0.4 (	).

noise plays a minor role as longer intervals induced by subdiffusive character occur. We
also observe that with the decrease of the subdiffusive index α, the maximum of the SNR
continuously decays and the nonmonotonic behaviour vanishes. The results show that the SR
effect is weakened as the subdiffusive character is enhanced. We compare the results with the
analytical results obtained by Liu and So in the pure subdiffusive case, and show that they are
qualitatively consistent.

Based on the viewpoint of subordination, one possible explanation for the competitive
case can be given as follows. In a bistable system, the best time to switch between potentials
is when the relevant potential barrier assumes a minimum. This is the case when the potential
V(x, τ ) = V(x)−A0 × cos(Qτ + ϕ) is tilted most extremely to the right or the left. If the
system switches at this time into the other well, then it takes half one periodic waiting time
into the other well until the new relevant barrier assumes a minimum. If the system misses
the best opportunity to jump, it has to wait another full period until the relevant barrier for
a switch assumes the minimum again. However, for the subordination process, the time-
dependent force only changes in real time t. As indicated above, before the subordination
X(St), the actual force is given by F(x, U(τ )). By replacing the V(x, t) with increment time
U(τ ), we get V(x, U(τ )) = V(x)−A0 × cos(QU(τ ) + ϕ). We show that the periodic character
of the time-dependent force is diminished. As the subdiffusive character is enhanced, i.e.
the increment level of U(τ ) is increased, the non-periodic property of the bistable system
becomes more pronounced, and input–output synchronization is weakened. Actually, before
the subordination process is carried out, the noise-induced phase synchronization has occurred,
and the subordinator St only plays a role in changing the time scale of time-dependent force
from random time τ to actual time t. That is to say, the increment process U(τ ) will weaken
the noise-induced synchronization, and the subordinator St causes the long rest induced by
subdiffusion to be a reality.

When the subdiffusive index α is fixed, the dependence of the SNR on noise is plotted for
different values of superdiffusive index μ in figure 3. It can be seen that the SNR increases

8
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D
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0S
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R

Figure 3. SNR versus symmetric noise intensity D. The parameters are a = 1, b = 1, Q = 0.1,
stability index α = 0.8 and skewness index β = 0. The different curves are plotted for different
values of the index μ. In particular, it is shown: μ = 1.9 (�), μ = 1.7 (O), μ = 1.5 (�).

with increasing noise intensity D at first, then decreases. The SNR curve still exhibits a
nonmonotonic SR behaviour. As the superdiffusive index μ is decreased, the tails on the
noise bell curves become thicker and the infinite variance noise becomes more impulsive.
We observe that the optimal value DSR of noise intensity decreases, i.e. DSR = 0.31, DSR =
0.22, and DSR = 0.13, for μ = 1.9, μ = 1.7, and μ = 1.5 respectively. The maximum of
the SNR becomes lower and the bell-shaped SNR curve becomes narrower, i.e. the lower the
exponent μ, the lower the SNR peak value. It can be explained as follows from three cases
respectively.

The dynamics property of Lévy flight in a harmonic potential should be reviewed first.
Actually, despite the infinite variance of Lévy noise, we argue that the output of the bistable
system should have finite variance [11]. There exists a critical value Cr,

Cr = 4 − μ, (23)

when the function of the potential U(x) asymptotic dependence on x has the form U(x)∼|x|C. If
the condition C > Cr holds true, the system output should have finite variance. When D < DSR,
the switching events in a bistable system are very rare, thus the periodic components of the
output signal are determined primarily by intrawell motion, in which the periodic components
of interwell dynamics are weak. However, when the noise intensity D is fixed, impulsive
noise can make the switching events between the two states become more frequent as the
superdiffusive index μ is decreased. The impulsive noise helps the particle to jump across
the barrier. Hence, the periodic components of interwell dynamics are enhanced. Before the
noise intensity D reaches the optimal value DSR, the SNR value will become larger as the
superdiffusive index μ is decreased. In the case when D = DSR, the synchronization effects
induced by impulsive noise are weaker than those effects which are induced by finite-variance
noise such as Gaussian noise. The long jump induced by the heavy-tailed distribution can
slightly diminish the periodic components of interwell dynamics. As the superdiffusive index
μ is decreased, the optimal SNR will become lower. In the case when the condition D >

DSR holds true, a loss of synchronization starts to occur. Compared with Gaussian noise at

9
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Figure 4. SNR versus noise intensity D for different values of driving frequency Q. The parameters
are μ = 1.7, α = 0.8, a = 1, b = 1, skewness index β = 0. The different curves represent different
SNR values with different frequency Q. It is shown: Q = 1 (�), Q = 0.1 (O), Q = 0.01 (�).

the same intensity D, the impulsive noise makes the system flip too many times between two
wells, and the periodic components of interwell dynamics are greatly weakened. The SNR
becomes lower as the superdiffusive index μ is decreased.

The SNR versus the noise intensity D at different driving frequencies is depicted in
figure 4. For a fixed angular modulation frequency Q, a nonmonotonic behaviour of SNR
versus the noise D is shown. With the decreasing driving frequency, we note that the maximum
of the SNR decreases and the peak positions shift to smaller noise intensity. A frequency-
dependence phenomenon is observed. As a matter of fact, any deviations of residence time
distribution from strictly exponential form indicate a deviation from Markovian behaviour.
According to the non-Markovian SR theory [22], the long jump induced by superdiffusion
does not change the Markovian nature of the bistable dynamics. Due to the existence of
subdiffusion, we conclude that non-exponential relaxation time or long rest lead the bistable
system to the deviation from the Markovian case and the frequency-dependence phenomenon
can occur. This is a main difference from classical two-state SR theory [1].

In the foregoing discussions, the noise intensity D is tunable, and the SR phenomenon is
called noise-induced SR. When fixing noise intensity, we also study the parameter-induced SR
effect by tuning the system parameter b. The SNR dependence on the parameter b for different
values of superdiffusive index μ is plotted in figure 5. It is shown that parameter-induced SR
still occurs in the competitive case. With the decrease of subdiffusive index α, the parameter-
induced SR effect is diminished. However, as the superdiffusive index μ is decreased, we
observe that the SNR curve becomes narrower and the peak value becomes larger. In contrast
with noise-induced SR, it is shown that the SNR performance can be improved by tuning the
system parameters. When the superdiffusive index μ = 1.5, the SNR value even becomes
positive. The results indicate that in a certain range the subdiffusive effect can be canceled
out by improving the superdiffusive character with optimal system parameters. The decrease
of the periodic components of interwell motion induced by the heavy-tailed waiting time can
sometimes be recovered by long jumps induced by Lévy flights.

10
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Figure 5. SNR versus system parameter b. The parameters are a = 1, Q = 0.1, stability index
α = 0.8, and skewness index β = 0. The different curves are plotted with different values of
superdiffusive index μ. In particular, it is shown: μ = 1.9 (O), μ = 1.7 (�), μ = 1.5 (
).

4. Conclusions

We have analysed the SR effect of the subdiffusive bistable model driven by Lévy noise, with a
sine input. Such a system, when both superdiffusion and subdiffusion are present, has a known
form of the FFPE. However, in the general case where external force is time-space-dependent,
we have not been able to find a valid form of the FFPE and have to resort to an analysis of
numerical simulations based on the subordination technique [15].

Through the numerical approach we have studied the dependence of the system response
on different system parameters. From the above results, it is apparent that the enhancement
of the output SNR versus the noise intensity D is decreased with increasing subdiffusive
character. We conclude that the phenomenon of the weakness of the SNR is robust in very
general systems where superdiffusion and subdiffusion coexist. It is seen that the enhancement
of the output SNR versus the noise intensity D is decreased when the superdiffusive index is
decreased. The result indicates that the impulsive character of Lévy noise clearly contributes
to diminishing the SR phenomenon in the subdiffusive system. For the competitive case,
the SNR versus the noise intensity D is tested against different values of driving frequency.
A frequency-dependence phenomenon is shown. Finally, we find that the enhancement of
the output SNR versus the system parameters is improved when the superdiffusive index is
decreased. We conclude that the decrease of the superdiffusive index in a certain range can
enhance the parameter-induced SR effect with fixed subdiffusive character, i.e. the subdiffusive
effect can sometimes be canceled out by increasing superdiffusive character.

One aspect worth studying in detail is the residence time distribution of the system, which
provides another possibility to characterize SR. We hope to extend the application of the
subordination technique to consider the noise-induced phase synchronization mechanism of
the bistable system in the competitive case between long rests and long jumps [23]. This
problem will be the subject of further work.

11



J. Phys. A: Math. Theor. 42 (2009) 475003 L Zhang et al

Acknowledgments

The authors are very grateful to the editor and the anonymous referees whose suggestions
have immensely improved the quality of the manuscript. We thank M Magdziarz for many
constructive suggestions about the subordination technique and simulating process. We greatly
appreciate financial support provided by the fellowship from Institute for Pure and Applied
Mathematics at UCLA where the work was carried out. The work is partly sponsored by the
National Science Foundation of China (no. 60775057).

References

[1] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223–85
[2] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 2009 Eur. Phys. J. B 69 1–3
[3] Hänggi P, Jung P, Zerbe C and Moss F 1993 J. Stat. Phys. 70 229–45
[4] Goychuk I and Hänggi P 2003 Phys. Rev. Lett. 91 070601
[5] Yim M Y and Liu K L 2006 Physica A 369 329–42
[6] Zeng L, Xu B and Li J 2007 Phys. Lett. A 361 455–9
[7] Dybiec B and Gudowska-Nowak E 2006 Acta Phys. Pol. B 37 1479–90
[8] Zeng L, Bao R and Xu B 2007 J. Phys. A: Math. Theor. 40 7175–85
[9] Denisov S I, Horsthemke W and Hänggi P 2009 Eur. Phys. J. B 68 567–75

[10] Sokolov I M, Heinsalu E, Hänggi P and Goychuk I 2009 Europhys. Lett. 86 30009
[11] Metzler R and Klafter J 2000 Phys. Rep. 339 1–77
[12] So F and Liu K L 2000 Physica A 277 335–48
[13] Heinsalu E, Patriarca M, Goychuk I and Hänggi P 2007 Phys. Rev. Lett. 99 120602
[14] Heinsalu E, Patriarca M, Goychuk I and Hänggi P 2009 Phys. Rev. E 79 041137
[15] Magdziarz M, Weron A and Klafter J 2008 Phys. Rev. Lett. 101 210601
[16] Magdziarz M and Weron A 2007 Phys. Rev. E 75 056702
[17] Jung P and Hänggi P 1989 Europhys. Lett. 8 505–10
[18] Jung P and Hänggi P 1991 Phys. Rev. A 44 8032–42
[19] Mitaim S and Kosko B 2004 IEEE Trans. Neural Netw. 15 1526–40
[20] Kosko B and Mitaim S 2003 Neural Netw. 16 755–61
[21] Heinsalu E, Patriarca M, Goychuk I, Schmid G and Hänggi P 2006 Phys. Rev. E 73 046133
[22] Goychuk I and Hänggi P 2004 Phys. Rev. E 69 021104
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